Usefulness of the Reversible Jump Markov Chain Monte Carlo Model in Regional Flood Frequency Analysis
نویسنده
چکیده
Regional flood frequency analysis is a convenient way to reduce estimation uncertainty when few data are available at the gauging site. In this work, a model that allows a non null probability to a regional fixed shape parameter is presented. This methodology is integrated within a Bayesian framework and uses reversible jump techniques. The performance on stochastic data of this new estimator is compared to two other models: a conventional Bayesian analysis and the index flood approach. Results show that the proposed estimator is absolutely suited to regional estimation when only a few data is available at the target site. Moreover, unlike the index flood estimator, target site index flood error estimation seems to have less impact on Bayesian estimators. Some suggestions about configurations of the pooling groups are also presented to increase the performance of each estimator.
منابع مشابه
A comparison of reversible jump MCMC algorithms for DNA sequence segmentation using hidden Markov models
This paper describes a Bayesian approach to determining the number of hidden states in a hidden Markov model (HMM) via reversible jump Markov chain Monte Carlo (MCMC) methods. Acceptance rates for these algorithms can be quite low, resulting in slow exploration of the posterior distribution. We consider a variety of reversible jump strategies which allow inferences to be made in discretely obse...
متن کاملBayesian Inference in Hidden Markov Models through Reversible Jump Markov Chain Monte Carlo
Hidden Markov models form an extension of mixture models providing a ex-ible class of models exhibiting dependence and a possibly large degree of variability. In this paper we show how reversible jump Markov chain Monte Carlo techniques can be used to estimate the parameters as well as the number of components of a hidden Markov model in a Bayesian framework. We employ a mixture of zero mean no...
متن کاملReversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers
Reversible jump methods are the most commonly used Markov chain Monte Carlo tool for exploring variable dimension statistical models. Recently, however, an alternative approach based on birth-and-death processes has been proposed by Stephens for mixtures of distributions.We show that the birth-and-death setting can be generalized to include other types of continuous time jumps like split-and-co...
متن کاملEfficient construction of reversible jump Markov chain Monte Carlo proposal distributions
The major implementational problem for reversible jump Markov chain Monte Carlo methods is that there is commonly no natural way to choose jump proposals since there is no Euclidean structure in the parameter space to guide our choice. We consider mechanisms for guiding the choice of proposal. The first group of methods is based on an analysis of acceptance probabilities for jumps. Essentially,...
متن کاملBayesian Analysis of Mixture Models with an Unknown Number of Components — an alternative to reversible jump methods
Richardson and Green (1997) present a method of performing a Bayesian analysis of data from a finite mixture distribution with an unknown number of components. Their method is a Markov Chain Monte Carlo (MCMC) approach, which makes use of the “reversible jump” methodology described by Green (1995). We describe an alternative MCMC method which views the parameters of the model as a (marked) poin...
متن کامل